A novel fusion approach to content-based image retrieval

نویسندگان

  • Xiaojun Qi
  • Yutao Han
چکیده

This paper proposes a novel fusion approach to content-based image retrieval. In our retrieval system, an image is represented by a set of color-clustering-based segmented regions and global/semi-global edge histogram descriptors (EHDs). As a result, the resemblance of two images is measured by an overall similarity fusing both region-based and global/semi-global-based image level similarities. In our approach, each segmented region corresponds to an object or parts of an object and is represented by two sets of fuzzified color and texture features. A fuzzy region matching scheme, which allows one region to match several regions, is then incorporated to address the issues associated with the color/texture inaccuracies and segmentation uncertainties. The matched regions, together with the simple semantics for determining the relative importance of each region, are further used to calculate the region-based image level similarity. The global/semi-global EHDs are also incorporated into our retrieval system since they do not depend on the segmentation results. These EHDs not only decrease the impact of inaccurate segmentation and but also reduce the possible retrieval accuracy degradation after applying the fuzzy approach to the accurate segmentation for images with distinctive and relevant scenes. The Manhattan distance is used to measure the global/semi-global image level similarity. Finally, the overall similarity is computed as a weighted combination of regional and global/semi-global image level similarity measures incorporating all features. Our proposed retrieval approach demonstrates a promising performance for an image database of 5000 general-purpose images from COREL, as compared with some current peer systems in the literature. 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

A New Query Dependent Feature Fusion Approach for Medical Image Retrieval based on One-Class SVM

With the development of the internet, medical images are now available in large numbers in online repositories, and there exists the need to retrieval the medical images in the content-based ways through automatically extracting visual information of the medical images. Since a single feature extracted from images just characterizes certain aspect of image content, multiple features are necessa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2005